Tutkijoille läpimurto: yksisuuntainen lasi tehostaisi aurinkokennojen toimintaa

Yksisuuntaisen lasin kehitys vihdoin mahdollista, kertovat Aalto-yliopiston tutkijat. Jos tekniikka onnistuu, yksisuuntainen lasi voisi myös tehostaa aurinkokennojen toimintaa ja estäisi kennojen lämpösäteilyn, mikä nykyisellä teknologialla vähentää niiden keräämän aurinkoenergian määrää.

Aalto-yliopiston tutkijat ovat pystyneet luomaan optisen metamateriaalin, joka on tähän asti ollut teknologian ulottumattomissa. Nyt kehitetty uusi materiaali mahdollistaa sovelluksia, jotka muuten tarvitsisivat vahvan ulkoisen magneettikentän toimiakseen, näistä esimerkkinä aidosti yksisuuntainen lasi.

Nykyisin yksisuuntaisena myytävä lasi on todellisuudessa vain puoliksi läpinäkyvää, ja se päästää valoa läpi molempiin suuntiin. Kun kirkkausolosuhteet ovat erilaiset lasin eri puolilla – esimerkiksi sisällä on pimeää ja ulkona valoisaa – lasi toimii yksisuuntaisesti.

Tutkijoiden kehittämään metamateriaaliin pohjautuva yksisuuntainen lasi ei kuitenkaan tarvitsisi kirkkauseroa toimiakseen, koska valo voisi kulkea sen läpi vain yhteen suuntaan. Jos tekniikka onnistuu, yksisuuntainen lasi voisi myös tehostaa esimerkiksi aurinkokennojen toimintaa.

Muista luonnonmateriaaleista poiketen metamateriaalien sähkömagneettisia ominaisuuksia on mahdollista muokata, mikä antaa materiaaleille täysin uudenlaisia käyttömahdollisuuksia esimerkiksi teollisuudessa.

”Kuvittele, että kotonasi, toimistossasi tai autossasi olisi ikkuna, jossa on tällainen lasi. Ulkona vallitsevasta kirkkaudesta riippumatta ihmiset eivät näkisi lainkaan sisälle, kun taas sinä nauttisit täydellisestä näkymästä ulos”, sanoo väitöskirjatutkija Shadi Safaei Jazi Aalto-yliopistosta.

Tutkijaryhmän kehittämä uusi materiaali hyödyntää metamateriaalien luonnonmateriaaleista poikkeavaa erityisominaisuutta eli niin sanottua NME-vaikutusta (englanniksi nonreciprocal magnetoelectric effect). NME-vaikutus on häviävän pieni luonnonmateriaaleissa, mutta tutkijat ovat yrittäneet tehostaa sitä metamateriaalien ja metapintojen avulla, koska se avaisi uudenlaisia teknologisia mahdollisuuksia.

”Toistaiseksi NME-vaikutus ei ole johtanut realistisiin teollisiin sovelluksiin. Useimmat aiemmin ehdotetuista ratkaisuista toimisivat vain mikroaaltojen, eivätkä näkyvän valon kohdalla, eikä niitä voitaisi valmistaa nykyteknologialla”, Safaei kertoo.

Uutta metamateriaalia voidaan kuitenkin valmistaa olemassa olevalla teknologialla tavanomaisia materiaaleja ja nanovalmistustekniikoita käyttäen. Tutkimus on äskettäin julkaistu arvostetussa Nature Communications -lehdessä (LINKKI, pdf).

Kuva: Aalto-yliopisto